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ABSTRACT
Background: Assessment of left ventricular systolic dysfunction pro-
vides essential information related to the prognosis and management
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RESUME
Contexte : L’�evaluation de la dysfonction systolique ventriculaire
gauche fournit des informations essentielles li�ees au pronostic et à la

Heart failure (HF) is a growing epidemic attributed to the
aging population worldwide.1,2 The main terminology used
to describe HF is based on the measurement of left ven-
tricular ejection fraction (LVEF).3,4 HF with reduced LVEF
(HFrEF) is associated with poor quality of life, and
increased morbidity and mortality. Recent studies have
ll rights reserved.
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of cardiovascular diseases. The aim of this study was to develop a
deep-learning model to identify left ventricular ejection fraction (LVEF)
� 35% via chest X-ray (CXR [CXR-EF�35%]) features and investigate
the performance and clinical implications.
Methods: This study collected 90,547 CXRs with the corresponding
LVEF according to transthoracic echocardiography from the outpatient
department in an academic medical center. Among these, 77,227
CXRs were used to develop the identification of CXR-EF�35%. Another
13,320 CXRs were used to validate the performance, which was
evaluated by area under the receiver operating characteristic curve
(AUC). Furthermore, CXR-EF�35% was tested to assess the long-term
risks of developing LVEF � 35% and cardiovascular outcomes, which
were evaluated by Kaplan-Meier survival analysis and the Cox pro-
portional hazards model.
Results: The AUCs of CXR-EF�35% for the detection of LVEF � 35%
were 0.888 and 0.867 in the internal and external validation cohorts,
respectively. Patients with baseline LVEF > 50% but detected as CXR-
EF�35% were at higher risk of long-term development of LVEF � 35%
(hazard ratio, internal validation cohort [HRi] 3.91, 95% CI 2.98-5.14;
hazard ratio, external validation cohort [HRe] 2.49, 95% CI 1.89-3.27).
Furthermore, patients detected as LVEF � 35% by CXR-EF�35% had
significantly higher future risks of all-cause mortality (HRi 1.40, 95% CI
1.15-1.71; HRe 1.38, 95% CI 1.15-1.66), cardiovascular mortality (HRi

3.02, 95% CI 1.84-4.98; HRe 2.60, 95% CI 1.77-3.82), and new-onset
atrial fibrillation (HRi 2.81, 95% CI 2.15-3.66; HRe 2.93, 95% CI 2.34-
3.67) compared with those detected as no LVEF � 35%.
Conclusions: CXR-EF�35% may serve as a screening tool for early
detection of LVEF � 35% and could independently contribute to pre-
dictions of long-term development of LVEF � 35% and cardiovascular
outcomes. Further prospective studies are needed to confirm the
model performance.

prise en charge des maladies cardiovasculaires. L’objectif de cette
�etude �etait de d�evelopper un modèle d’apprentissage profond pour
identifier une fraction d’�ejection ventriculaire gauche (FEVG) � 35 %
via les donn�ees de radiographie thoracique (RT [RT-FE�35%]) et d’en
�etudier les performances et les implications cliniques.
M�ethodes : Cette �etude a recueilli 90 547 RT, chacune associ�ee à une
FEVG selon les critères de l’�echocardiographie transthoracique issue
du service ambulatoire d’un centre m�edical universitaire. Parmi celles-
ci, 77 227 RT ont �et�e utilis�ees pour d�evelopper l’identification de RT-
FE�35%. Les 13 320 RT restantes ont �et�e utilis�ees pour en valider la
performance, qui a �et�e �evalu�ee via l’aire sous la courbe caract�eristique
d’exploitation du r�ecepteur (ASC). En outre, la RT-FE�35% a �et�e test�ee
pour �evaluer les risques à long terme de d�evelopper une FEVG � 35 %
et ses cons�equences cardiovasculaires, qui ont �et�e �evalu�es par une
analyse de survie Kaplan-Meier et le modèle des risques pro-
portionnels de Cox.
R�esultats : Les ASC de la RT-FE�35% pour la d�etection d’une FEVG �
35 % �etaient de 0,888 et 0,867 dans les cohortes de validation interne
et externe, respectivement. Les patients pr�esentant une FEVG initiale
> 50 % mais d�etect�ees comme RT-FE�35% pr�esentaient un risque
plus �elev�e, à long terme, de d�evelopper une FEVG � 35 % (rapport de
risque, cohorte de validation interne [RRi] 3,91, intervalle de confiance
[IC] à 95 % 2,98-5,14; rapport de risque, cohorte de validation externe
[RRe] 2,49, IC à 95 % 1,89-3,27). En outre, les patients d�etect�es
comme ayant une FEVG � 35 % par RT-FE�35% pr�esentaient des
risques de mortalit�e future significativement plus �elev�es, toutes causes
confondues (RRi 1,40, IC à 95 % 1,15-1,71; RRe 1,38, IC à 95 % 1,15-
1,66), de mortalit�e cardiovasculaire (RRi 3,02, IC à 95 % 1,84-4,98;
RRe 2,60, IC à 95 % 1,77-3,82) et de fibrillation auriculaire d’appar-
ition r�ecente (RRi 2,81, IC à 95 % 2,15-3,66; RRe 2,93, IC à 95 %
2,34-3,67) par rapport aux personnes d�etect�ees comme n’ayant pas
de FEVG � 35 %.
Conclusions : La RT-FE�35% peut servir d’outil de d�epistage pour la
d�etection pr�ecoce de la FEVG � 35 % et pourrait ind�ependamment
contribuer aux pr�edictions de l’�evolution à long terme de la FEVG� 35%
et des effets cardiovasculaires. D’autres �etudes prospectives sont
n�ecessaires pour confirmer la performance du modèle.
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demonstrated that all-cause mortality is generally higher in
HFrEF than in HF with preserved LVEF.5,6 Guideline-
directed management and therapies have improved sur-
vival and reduced rehospitalisation in patients with
HFrEF.7,8

Strategies for the early identification of left ventricular
systolic dysfunction (LVSD) may prevent progression to
symptomatic HF. Cardiac imaging plays an essential role in
diagnosis and guiding treatment. Among several imaging
modalities, transthoracic echocardiography (TTE) is the pri-
mary and standard method owing to its optimal accuracy,
portability, and safety. Nevertheless, TTE is an expensive and
time-consuming tool and, importantly, requires specialists for
operation and interpretation.

Chest X-ray (CXR) is a widespread, noninvasive, and
preliminary radiologic screen examination, providing pri-
mary information about patients’ pulmonary and heart
conditions. Although it has a limited role in the diagnostic
work-up of patients with suspected HF, it is still helpful in
the acute setting, rather than in the nonacute setting, in HF
patients.9 It is difficult, however, for general practitioners to
make a precise evaluation of LVSD with the use of CXR
alone.

Artificial intelligence (AI) using deep-learning models
(DLMs) has been applied to the sophisticated interpretation
of subtle patterns of digital images in multiple applications
to facilitate physicians’ diagnostic support or prompt treat-
ment.10,11 Many studies have focused on cardiac computed
tomography (CT) or magnetic resonance imaging
(MRI), which are expensive and time consuming, radiation
exposing, and of concern to renal function and require
contrast injection and expert interpretation. Recent studies
have shown a significant association between AI-enabled
CXR and the diagnosis of HF.12,13 Nevertheless, research
on the use of DLMs to detect LVSD based on CXR is
scarce. Therefore, we hypothesised that AI-enabled CXR
may be a potential tool for large-scale screening and
detecting of LVSD.

In this cohort study, we developed a DLM to detect
LVEF � 35% based on CXR, with the corresponding LVEF
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validated by TTE. We verified the performance of the DLM
to evaluate LVEF � 35% using CXR (CXR-EF�35%) and
explored the correlation between CXR-EF�35% and TTE
parameters. Furthermore, this study set out to demonstrate
the capability of CXR-EF�35% to predict long-term
development of LVEF � 35% and cardiovascular out-
comes to enhance the potential value in future clinical
applications.
Methods

Data source

This study was approved by the Institutional Review
Board of Tri-Service General Hospital (TSGH), Taipei,
Taiwan (IRB no. C202105150). We performed a retro-
spective 2-site study in the TSGH system from January 1,
2010, to December 31, 2020. Information on study sites is
provided in Suppemental Appendix S1. We identified CXRs
in the posterior-anterior view with at least 1 TTE obtained
within 7 days of the index CXR. A total of 45,188 patients
in the study period at hospital A with more than 1 CXR-
TTE pair within 7 days were included. Figure 1 shows
the generation of each dataset. There were 5535 patients
before January 1, 2015, in the validation set and 5437 pa-
tients before January 1, 2016, in the tuning set for guiding
the training process. The remaining 34,216 patients, who
were used for training a DLM, provided 62,821 CXRs with
the corresponding LVEF to construct a development set.
Details of sample assignment are provided in the
Supplemental Appendix S1.

To conduct the accuracy test of the DLM, an internal
validation set including 5535 independent patients was
enrolled and the other 7785 nonoverlapping patients at hos-
pital B meeting the same criteria were included in the external
validation set. To avoid overrepresenting sicker patients who
undergo more CXRs, we selected a single CXR per patient in
both validation sets. Rather than selecting the most recent or
earliest CXR, we randomly sampled 1 CXR from all CXRs
available for a given patient. This strategy was considered to
be most representative of deploying the model on CXRs from
new patients, which in each case would be at a random time
point in that patient’s life. This strategy has bee previously
described.14
Quantitative echocardiographic data collection

Comprehensive 2-dimensional TTE was available for all
patients. Quantitative data were recorded at the time of
acquisition with a Philips image system. LVEF is routinely
acquired by experienced technicians or cardiologists using
standardised methods. LVEF was determined with the use of
the M-mode, modified Simpson method in 2-dimensional
imaging, and the reported visually estimated LVEF. We
traced the endocardial border in both apical 4-chamber and 2-
chamber views in end-systole and end-diastole. After dividing
the LV cavity into predetermined numbers of slices, LV vol-
ume and LVEF were calculated.
Implementation of the DLM

The CXR image was recorded in DICOM format with a
resolution of more than 3000 � 3000 pixels. All CXRs were
labelled as a binary classification according to LVEF � 35%.
The training details of the DLM for CXR were revised from a
previous study.10 The major feature extraction architecture is
based on a 50-layer SE-ResNeXt, which won the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) in
2017.15 This SE-ResNeXt is pretrained by ImageNet, and the
last feature map is saved for further application. The output
features of SE-ResNeXt are downsampled by 32-fold
compared with the original images, which were passed
through a subsequent global pooling layer and a fully con-
nected layer with 1 output with a sigmoid function. The
output of our revised DLM was a probability to describe the
likelihood of LVEF � 35%. We resized our CXR to let the
short side be 256 pixels without changing the aspect ratio. In
the training stage, we randomly cropped 224 � 224 pixels as
input and applied a random lateral inversion with 50%
probability. In the inference stage, the 10-crop evaluation
based on a previous study was used to generate 10 probabil-
ities for each CXR.16 An average of a total of 10 probabilities
was the final output of our AI network. Detailed information
on the DLM implantation is provided in Supplemental
Appendix S1.

Baseline information and data collection

The electronic medical record (EMR) of each hospital
provided baseline information. The disease histories were
based on a new diagnosis according to the corresponding
International Classification of Diseases (ICD), Ninth and
Tenth Revisions, or laboratory tests. The details of enrolled
ICD codes are provided in the Data Collection section of
Supplemental Appendix S1. Patients with at least 2 records of
� 7 mmol/L fasting glucose or � 48 mmol/mol glycated
hemoglobin for 6 months were considered to have diabetes.
We also defined at least 2 records of estimated glomerular
filtration rate < 1 mL/s as chronic kidney disease (CKD).

Outcomes

We followed several outcomes of interest in both the in-
ternal and external validation sets. The primary outcome was
the ability of CXR-EF�35% to identify individuals with
LVEF > 50% at the time of screening, who had an increasing
risk of subsequent developing LVEF � 35% during follow-
up.17 The follow-up time was calculated with reference to the
date of CXR. Patient status was defined through continuous
LVEF changes, which were updated by each TTE. Moreover,
data for unchanged patients were censored at the patient’s last
known TTE to limit bias from incomplete records. The sec-
ondary outcomes including subsequent all-cause mortality,
cardiovascular (CV) mortality, acute myocardial infarction
(AMI), and new-onset atrial fibrillation (AF) were evaluated.
Patients with a history of AMI or AF were excluded from the
analysis of the same follow-up outcomes of interest. These
statuses were defined as the corresponding events or ICD
records from our EMR, which were updated by each hospital
activity. The data for at-risk patients were also censored at the



Figure 1. Development, tuning, internal validation, and external validation set generation and chest X-ray (CXR) labelling of ejection fraction (EF).
The dataset creation and analysis strategy was devised to assure a robust and reliable dataset for training, validating, and testing of the network.
Once a patient’s data were placed in one of the datasets, those data were used only in that set, avoiding “cross-contamination” among the
development, tuning, and validation sets. DLM, deep-learning model.
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patient’s last known hospital encounter to limit bias from
incomplete records.
Statistical analysis

We presented the characteristics of different datasets as
mean and standard deviation, number of patients, or per-
centage as appropriate. They were compared by means of
either analysis of variance or chi-square test as appropriate.
The performance of CXR-EF�35% was determined by
receiver operating characteristic (ROC) curve analysis to
detect an LVEF � 35%, and the area under the curve (AUC),
sensitivity, and specificity were used to demonstrate the per-
formance. The operating point was selected based on the
maximum Youden index in the tuning set, which was used for
both validation sets as the same value. We also used baseline
information for stratifying patients to explore the performance
of CXR-EF�35% in each population. All statistical analyses
were completed in R software version 3.4.4 (R Foundation for
Statistical Computing, Vienna, Austria). The significance level
was set as P < 0.05.

For the estimation error analysis, we explored the differ-
ence in patient characteristics between CXR-EF�35%þ and
CXR-EF�35%� patients. Linear regression or logistic
regression was used for statistical testing where appropriate.
We also performed Kaplan-Meier survival analysis with the
available follow-up data stratified by CXR-EF�35% predic-
tion on each outcome of interest. A Cox proportional hazards
model was used to calculate the hazard ratios (HRs) with 95%
confidence intervals (95% CIs), which were reported for all
data. According to the potential competing risk between all-
cause mortality and other outcomes of interest, we used the
R package “cmprsk” to calculate cumulative incidence and
conduct competing risks regression.18
Results

Baseline characteristics

Patient characteristics of the development, tuning, internal
and external validation cohorts were shown in Table 1. Pa-
tients in the development cohort were younger and more
male, had a lower BMI and fewer comorbidities than patients
in the validation cohorts. In the development cohort, 3026
patients (4.8%) had an LVEF � 35%, 6310 patients (10.1%)
had an LVEF > 35% to 50%, and 53,485 patients (85.1%)
had an LVEF > 50%. In the internal validation cohort, 258
patients (4.7%) had an LVEF � 35%, 583 patients (10.5%)
had an LVEF > 35% to 50%, and 4694 patients (84.8%) had
an LVEF > 50%, while in the external validation cohort, 284
patients (3.7%) had an LVEF � 35%, 686 patients (8.8%)
had an LVEF > 35% to 50%, and 6815 patients (87.5%) had
an LVEF > 50%.

Performance of CXR-EF�35% to identify LVEF £ 35%

The algorithm provided discrimination between LVEF �
35% and LVEF > 35% with an AUC of 0.888 and corre-
sponding sensitivity of 80.2% and specificity of 83.1% in the
internal validation cohort and an AUC of 0.867 with corre-
sponding sensitivity of 72.5% and specificity of 84.7% in the
external validation cohort, as shown in Figure 2. The model
performance was further adjusted for age and sex, but did not
improve as shown in Supplemental Figure S1 and described in
the Results section of Supplemental Appendix S1. In addition,
the performance of CXR-EF�35% to distinguish between



Table 1. Corresponding characteristics in development, tuning, internal validation, and external validation sets

Development Tuning Internal validation External validation

P value(n ¼ 62,821) (n ¼ 14,406) (n ¼ 5535) (n ¼ 7785)

Demographics
Male 33,650 (54.4%) 7452 (51.7%) 2902 (52.4%) 3931 (50.5%) < 0.001
Age, years 67.1 � 16.7 70.3 � 15.6 67.8 � 15.6 70.5 � 16.6 < 0.001
BMI, kg/m2 24.2 � 4.4 24.0 � 4.5 24.6 � 4.4 24.3 � 4.3 < 0.001

Disease history
DM 17,596 (28.4%) 5701 (39.6%) 2114 (38.2%) 2943 (37.8%) < 0.001
HTN 27,624 (44.6%) 8914 (61.9%) 3381 (61.1%) 5007 (64.3%) < 0.001
HLP 19,363 (31.3%) 6593 (45.8%) 2698 (48.7%) 3972 (51.0%) < 0.001
CKD 20,415 (33.0%) 7543 (52.4%) 2218 (40.1%) 3053 (39.2%) < 0.001
AMI 2402 (3.9%) 982 (6.8%) 311 (5.6%) 293 (3.8%) < 0.001
CAD 14,772 (23.9%) 5294 (36.7%) 2118 (38.3%) 2926 (37.6%) < 0.001
Stroke 10,567 (17.1%) 3,668 (25.5%) 1285 (23.2%) 1977 (25.4%) < 0.001
AF 4464 (7.2%) 1868 (13.0%) 571 (10.3%) 786 (10.1%) < 0.001
COPD 10,546 (17.0%) 3805 (26.4%) 1423 (25.7%) 2480 (31.9%) < 0.001

Echocardiographic data
LVEF, % 63.2 � 12.5 61.6 � 13.5 63.3 � 12.3 64.1 � 11.5 < 0.001
LV-D, mm 47.5 � 7.3 47.9 � 7.9 47.6 � 7.4 47.3 � 7.1 < 0.001
LV-S, mm 30.5 � 7.1 31.1 � 7.7 30.5 � 7.1 30.1 � 6.7 < 0.001
IVS, mm 11.4 � 2.6 11.7 � 2.6 11.5 � 2.6 11.4 � 2.6 < 0.001
LVPW, mm 9.4 � 1.8 9.6 � 1.8 9.5 � 1.7 9.3 � 1.7 < 0.001
LA, mm 39.1 � 7.9 40.1 � 8.4 39.5 � 8.0 39.5 � 7.8 < 0.001
AO, mm 33.1 � 4.3 33.3 � 4.4 33.3 � 4.4 33.1 � 4.3 < 0.001
RV, mm 24.0 � 5.1 24.3 � 5.2 24.4 � 5.1 24.1 � 5.0 < 0.001
PASP, mm Hg 34.4 � 12.1 35.6 � 12.9 33.8 � 11.7 34.6 � 12.0 < 0.001

Values are n (%) or mean � SD.
AF, atrial fibrillation; AMI, acute myocardial infarction; AO, aortic root diameter; BMI, body mass index; CAD, coronary artery disease; CKD, chronic kidney

disease; COPD, chronic obstructive pulmonary disease; DM, diabetes mellitus; HLP, hyperlipidemia; HTN, hypertension; IVS, interventricular septum thickness;
LA, left atrial diameter; LV-D, left ventricular end-diastolic diameter; LV-S, left ventricular end-systolic diameter; LVEF, ventricular ejection fraction; LVPW, left
ventricular posterior wall thickness; PASP, pulmonary artery systolic pressure; RV, right ventricular outflow tract proximal diameter in parasternal long axis view.
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LVEF � 50% and > 50% was investigated. These results are
shown in Supplemental Figure S2 and described in the Results
section of Supplemental Appendix S1. CXR-EF�35%
appeared to have relative better performance in detecting
LVEF � 35% in patients without CKD and AMI in both
validation cohorts, as shown in Figure 3.

Echocardiographic characteristics and risk analysis
stratified by CXR-EF�35% in different LVEF groups

Patients with a baseline LVEF > 50%, detected as LVEF
� 35% by CXR-EF�35% (CXR-EF�35%þ) were more
physically incompetent, showing male predominance, larger
LV, right ventricular (RV), and LA size, and thicker LV
posterior wall and interventricular septum, compared with
those who were detected as no LVEF � 35% by CXR-
EF�35% (CXR-EF�35%�) in both validation cohorts, as
shown in Figure 4. This implied that CXR-EF�35% might
provide the capability for evaluating the long-term outcome
according to worsening of underlying TTE parameters in
those with a baseline LVEF > 50%.

Prediction of long-term risk of developing LVEF £ 35%

The prediction of long-term development of LVEF �
35% in patients with a baseline LVEF > 50% stratified by
the CXR-EF�35% after the adjustment for age and sex was
showed in Figure 5. The cumulative incidence of developing
LVEF � 35% was 25.4% and 32.9% for 3 and 6 years,
respectively, in those stratified as CXR-EF�35%þ,
compared with 6.0% and 8.5% for 3 and 6 years in those
stratified as CXR-EF�35%� in the internal validation
cohort, and the cumulative incidence of developing LVEF �
35% was 20.1% and 27.0% for 3 and 6 years in those
stratified as CXR-EF�35%þ, compared with 6.6% and
10.6% for 3 and 6 years in those stratified as CXR-
EF�35%� in the external validation cohort. This indicated
a higher risk of future LVEF � 35% when patients with
LVEF > 50% detected as LVEF � 35% compared with
those detected as LVEF � 35% by CXR-EF�35% (internal
validation cohort HR [HRi] 3.91, 95% CI 2.98-5.14; P <
0.01; external validation cohort HR [HRi] 2.49, 95% CI
1.89-3.27; P < 0.01). It demonstrated the capability of
CXR-EF�35% to predict the long-term development of
LVEF � 35% in patients with LVEF > 50%. Furthermore,
a sensitivity analysis was evaluated to consider potential
competing risk of death and long-term development of
LVEF � 35%. We conducted a competing risk analysis in
Supplemental Fig. S3. The results were similar to those in
Figure 5, which implied independence between the 2 events
and no potential competing risk.

Prediction of long-term risk of CV outcomes

We analysed the HR comparison of each outcome, which
was followed along with developing LVEF � 35%, as shown
in Figure 6. Stratified by LVEF, lower LVEF predicted higher
long-term risks of CV outcomes, including all-cause mortality
(HRi 1.20, 95% CI 1.03-1.40 [P ¼ 0.017]; HRe 1.17, 95%
CI 1.01-1.37 [P ¼ 0.043]), CV mortality (HRi 2.06, 95% CI



Figure 2. The area under the receiver operating characteristic curve (AUC) of CXR-EF�35% to identify left ventricular ejection fraction (LVEF) � 35%.
The AUC (x-axis ¼ 1-specificity; y-axis ¼ sensitivity) were calculated in the internal and external validation sets. The operating point was selected
based on the maximum of Youden’s index in tuning set, which was used for calculating the corresponding sensitivities and specificities in both
validation sets. CXR-EF�35%, deep-learning model to identify LVEF � 35% via chest X-ray; NPV, negative predictive value; PPV, positive predictive
value; Sens, sensitivity; Spec, specificity.
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1.54-2.76 [P < 0.01]; HRe 1.68, 95% CI 1.28-2.21 [P <
0.01]), AMI (HRi 2.50, 95% CI 1.92-3.27 [P < 0.01]; HRe

2.80, 95% CI 2.22-3.54 [P < 0.01]), and new-onset AF (HRi

1.36, 95% CI 1.12-1.65 [P < 0.01]; HRe 1.42, 95% CI
1.18-1.69 [P < 0.01]), compared to normal LVEF in both
validation cohorts. Importantly, patients with CXR-
EF�35%þ significantly contributed to higher risks of all-
cause mortality (HRi 1.40, 95% CI 1.15-1.71; HRe 1.38,
95% CI 1.15-1.66), CV mortality (HRi3.02, 95% CI 1.84-
4.98; HRe 2.60, 95% CI 1.77-3.82), and new-onset AF (HRi

2.81, 95% CI 2.15-3.66; HRe 2.93, 95% CI 2.34-3.67)
compared with those with CXR-EF�35%e. These features
were noticeably demonstrated in patients with baseline LVEF
> 50%. The competing risk analysis is shown in
Supplemental Figure S4. The results were similar to those in
Figure 6, demonstrating a robust finding in extensive
outcomes.
Discussion
In this study, we developed a DLM to detect LVEF �

35% based on CXR (CXR-EF�35%), which achieved an
AUC of 0.888 with a sensitivity of 80.2% and a specificity of
83.1% in the internal validation cohort. Our model may be
useful for early detection of LVEF � 35% via CXR, especially
in patients without a history of CKD and AMI, for general
practitioners in primary care. Moreover, CXR-EF�35% may
serve as a screening tool in patients with an initial LVEF >
50% for the long-term development of LVEF � 35% and CV
outcomes.

The present study was the first to explore the detection of
LVEF � 35% by means of a DLM using CXR. The appli-
cation of AI-enabled CXR to detect pulmonary diseases or
anomalies, including nodule, tumour, pneumonia, or tuber-
culosis, with regard to diagnosis, staging, exacerbations, and
survival is widespread.19 Automated CXR reading based on
DLMs is currently an intense field of research. Nevertheless,
most studies are limited to the lungs.10 Recently, a growing
number of studies have reported the use of AI-enabled CXR
to detect heart structures and conditions.20,21 CXR is a 2-
dimensional (2D) presentation of the 3D heart structure. In
contrast, there are other advanced diagnostic methods, such as
electrocardiography (ECG), echocardiography, and cardiac
CT or MRI, that can provide extra information better than
CXR about how efficiently the heart is pumping and which
chambers of the heart are enlarged.19 Nevertheless, CXR of-
fers the fundamental evaluation in integrated cardiopulmo-
nary conditions and serves as a common, feasible, affordable
clinical examination than the above tools for screening and
detecting heart functions.

Asymptomatic LVSD is present in 3% of the general
population and confers a 4-fold increased risk of clinical HF
and a 2.0-fold increased risk of all-cause mortality.22-24

Effective population-wide screening for LVSD is lacking.
Previous studies using ECG to identify patients with an LVEF
� 35% revealed an AUC of 0.933 with a sensitivity of 86.3%
and a specificity of 85.7%. In contrast, CXR-EF�35% in the
internal validation set showed an AUC of 0.888 with a
sensitivity of 80.2% and a specificity of 83.1%. Basically, both
CXR and ECG are modalities for the diagnostic work-up in
patients with HF. With the application of DLM, the per-
formances of the 2 modalities are strengthened for detecting
LVEF � 35%. Based on the different characteristics of CXR
and ECG, incorporation of both modalities was considered to
enhance the capability to detect LVEF � 35%.

B-Type natriuretic peptide (BNP) and N-terminal
proBNP (NT-proBNP) have been previously proposed for the
screening or detection of LVSD. The Dallas Heart Study
screened LVSD with the use of both markers and found an
AUC < 0.700, and performance did not improve more



Figure 3. The sensitivity and specificity of CXR-EF�35% to detect left ventricular ejection fraction (LVEF) � 35% tabulated across a series of
stratified analyses. The diagnostic odds ratio (OR), which is the ratio of the positive likelihood ratio (sensitivity/[1�specificity]) to the negative
likelihood ratio ([1�sensitivity]/specificity), as well as the associated 95% confidence interval (CI), is shown for each feature. CXR-EF�35%, deep-
learning model to identify LVEF � 35% via chest X-ray; Sens, sensitivity; Spec, specificity.
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among subgroups aged � 50 or with hypertension.25 Leong
et al. appraised community screening for LVSD with the use
of plasma and urinary natriuretic peptides and found AUCs
for urinary and plasma NT-proBNP of 0.831 and 0.840,
respectively. The plasma-urinary NT-proBNP product could
improve the performance with an AUC of 0.923.26 A Mayo
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Clinic study screening a population aged � 45 with the use of
BNP and NT-proBNP demonstrated that the AUCs were
greater for individuals with more severe systolic dysfunction,
(0.89 and 0.94, respectively) than for those with any systolic
dysfunction (0.72 and 0.78).27 The screening method with
biomarkers was time consuming and required blood draws. In
addition, optimal discriminatory levels for both natriuretic
peptide biomarkers varied with age, sex, and baseline
comorbidities.8 Overall, BNP or NT-proBNP was a
suboptimal screening test for LVSD in the general population.
In contrast, CXR-EF�35% presented with equivalent per-
formance across age and sex strata. This capability appears to
be unique for the screening of LVSD.

In addition to validly identifying patients with LVEF �
35%, intriguingly, CXR-EF�35% may predict long-term
development of LVEF � 35%. CXR-EF�35% identified
patients with an initial LVEF > 50% who were at risk of
subsequently developing LVEF � 35%. The long-term



Figure 5. Long-term incidence of developing left ventricular ejection fraction (LVEF) � 35% in patients with an initial LVEF > 50% stratified by CXR-
EF�35%. The y-axis indicates the cumulative incidence of developing LVEF � 35%, and the x-axis indicates years from the time of the first chest X-
ray (CXR). Sex and age were adjusted in this model. CXR-EF�35%, deep-learning model to identify LVEF � 35% via CXR; HR, hazard ratio.
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incidence of developing LVEF � 35% in patients with an
initial LVEF > 50% stratified by CXR-EF�35%þ was
significantly increased by a 2- to 4-fold compared with those
stratified by CXR-EF�35%� in both validation cohorts.
These results indicated that CXR-EF�35% may have the
capability to identify CXR manifestations to predict long-term
development of LVEF � 35% before overt LVEF � 35%
Ref.
n = 4044

HR: 1.15
(0.82, 1.60)

n = 314

HR: 2.47
(1.36, 4.50)

n = 51

HR: 1.44
(1.14, 1.81)

n = 626

HR: 1.82
(1.34, 2.47)

n = 266

HR: 1.74
(1.21, 2.52)

n = 204

HR: 1.20 (1.03, 1.40)
p for trend = 0.017

H
R

: 1.40 (1.15, 1.71)
p for trend = 0.001

CXR−E
F ≤ 35

% (+
)

CXR−E
F ≤ 35

% (−
)

EF > 50

EF 36
−5

0

EF ≤ 35

All−cause mortality

Ref.
n = 4044

HR: 2.57
(1.06, 6.27)

n = 314

HR: 15.75
(6.04, 41.04)

n = 51

HR: 4.21
(2.31, 7.65)

n = 626

HR: 7.59
(3.93, 14.66)

n = 266

HR: 11.69
(6.13, 22.29)

n = 204

HR: 2.06 (1.54, 2.76)
p for trend < 0.001

H
R

: 3.02 (1.84, 4.98)
p for trend < 0.001

CXR−E
F ≤ 35

% (+
)

CXR−E
F ≤ 35

% (−
)

EF > 50

EF 36
−5

0

EF ≤ 35

CV mortality

CXR

CXR

Ref.
n = 5906

HR: 1.61
(1.20, 2.15)

n = 378

HR: 2.29
(1.22, 4.28)

n = 78

HR: 1.58
(1.29, 1.93)

n = 837

HR: 1.57
(1.14, 2.16)

n = 303

HR: 1.39
(0.88, 2.18)

n = 206

HR: 1.17 (1.01, 1.37)
p for trend = 0.043

H
R

: 1.38 (1.15, 1.66)
p for trend = 0.001

CXR−E
F ≤ 35

% (+
)

CXR−E
F ≤ 35

% (−
)

EF > 50

EF 36
−5

0

EF ≤ 35

All−cause mortality

Ref.
n = 5906

HR: 3.03
(1.66, 5.52)

n = 378

HR: 5.22
(1.64, 16.65)

n = 78

HR: 3.20
(2.07, 4.95)

n = 837

HR: 5.16
(2.99, 8.90)

n = 303

HR: 5.49
(2.71, 11.14)

n = 206

HR: 1.68 (1.28, 2.21)
p for trend < 0.001

H
R

: 2.60 (1.77, 3.82)
p for trend < 0.001

CXR−E
F ≤ 35

% (+
)

CXR−E
F ≤ 35

% (−
)

EF > 50

EF 36
−5

0

EF ≤ 35

CV mortality

CXR

CXR

Internal validation set

External validation set

Figure 6. The risk matrixes of long-term cardiovascular (CV) outcomes strat
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manifests. Nevertheless, further prospective studies are needed
to validate this prediction model.

CXR-EF�35% may have several potential clinical appli-
cations. First, with the incorporation of CXR-EF�35%, CXR
may be used not only to detect cardiopulmonary abnormal-
ities, but also preliminarily to identify LVEF � 35% with
subsequent TTE validation. Second, it may serve as a
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screening tool to early identify potentially high-risk LVSD
patientsm such as asymptomatic American College of Car-
diology Foundation/American Heart Association HF stage A/
B patients or HF with preserved LVEF with potential pro-
gression to reduced LVEF, probably enabling these in-
dividuals to early adopt further CV image examination,
aggressive risk modification, or guideline-directed medical
therapies. Third, this algorithm may be translated into pre-
ventive medicine or primary health care to identify in-
dividuals with long-term risk of developing LVEF � 35%
and CV outcomes. Fourth, to strengthen the ability of CXR-
EF�35% to identify patients with LVEF � 35%, it could be
linked to the patient’s medical history, risk factor assessment,
biomarkers, or 12-lead ECG, and finally provide recom-
mendations for clinicians to arrange further examination or
imaging modalities to recognise patients with LVEF � 35%
and prevent future worse outcomes.
Limitations

Several limitations need to be addressed in this work. First,
this was a retrospective study. Although CXRs were collected
in outpatient departments, further community-based pro-
spective studies are necessary to validate the accuracy and
application of CXR-EF�35%. Second, despite the methods
applied to reduce class imbalance and overfitting of the DLM,
the generalisation of the DLM should be carefully evaluated.
Further studies are warranted to confirm the model perfor-
mance. Third, the CXR characteristics found by the DLM
cannot be ascertained. A set of methods is used to create the
model with raw data for automatic identification of features
and relationships. Fourth, the CXR-TTE pairs were not
simultaneously acquired. However, we collected all echocar-
diograms within 7 days, and 80% of TTEs were performed
within 3 days. The inaccuracy related to temporal delay is
small. Fifth, the detection of LVEF by CXR-EF�35% was
divided into only � 35% and > 35%. An LVEF cutoff of
35% was selected owing to the well-established outcome and
therapeutic implications of this value.17 However, the iden-
tification of LVEF < 50% is still clinically significant,
reflecting an abnormal LVEF. Further detailed stratification of
LVEF may be needed, especially in the range of 35%-50%.
Finally, CXR-EF�35% was trained to identify LVEF � 35%
via CXR, serving as a screening tool, but it was unable to
recognise patient’s clinical condition, including acute
decompensation, New York Heart Association functional
class, or asymptomatic status.
Conclusion
We developed a DLM from a large set of CXRs validated

by TTE, to identify LVEF � 35%. The novel strategy pro-
vides a common, feasible, and affordable method to assist
physicians in early identifying individuals with current or
subsequent LVEF � 35%. AI-enabled CXR may permit the
addition of significant prognostic implication for LVEF �
35% and serve as a screening tool to improve the quality of
care in the CV field in the near future.
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